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Abstract

The US data centre industry remains the infrastructural backbone of the contemporary Internet.
The recent cloud services expansion and ‘AI Boom’ has highlighted the importance of the industry
and resulted in substantial demand for its services (EPRI, 2024). This paper seeks to contribute
to the existing literature by analysing the impact of data centres on broader electricity markets. It
proposes a three-step strategy: structural break tests (Chow, 1960), (Andrews, 2003) and synthetic
control analyses (Abadie and Gardeazabal, 2003) are performed to demonstrate the causal link be-
tween data centres and electricity consumption. Vector Autoregressive Models (Sims, 1980) are
used to estimate the impact of data centres on regional and sectoral electricity prices and power
demand. The study leverages the unique properties of the US state of Virginia and provides quan-
titative evidence that the data centre industry is a major energy consumer in the Northeastern US.
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1 Introduction
Virginia dominates the United States’ data centre industry with almost half of all national capacity
being installed within the state’s borders (JLARC, 2024). The sheer scale of the existing comput-
ing infrastructure, along with unique geographic properties of Virginia, offers an opportunity to
analyse the impact of data centres on local and regional electricity markets. The study addresses
the existing literature gap by deploying previously unused methodologies to provide evidence to
what extent data centres influence electricity markets: particularly demand and price patterns. The
research aims to provide comprehensive understanding and reliable estimates for future policymak-
ers, ensuring an economically equal and swift growth of the Internet of Things economy.

Section 1 presents the background information and summarises the historical development of
the industry. Sections 2 and 3 review the existing literature, methodology and data. Section 4
discusses the results and limitations. I conclude by providing estimated impact of the data centre
industry on Virginia’s electricity prices, and spillover effects to neighbouring states and sectors.

1.1 Background Information
What is a data centre? A data centre is an infrastructure that organizes, processes, stores, and
disseminates large amounts of data (Maryland DoC, 2020). Such infrastructure requires substan-
tial amount of resources, primarily electric power, to sustain its services. In 2023, the industry was
responsible for 4% of total US national electricity consumption (EPRI, 2024). Geographic location
i.e. proximity to major internet cables responsible for the physical data flow of the Internet, and
access to reliable power sources, are the defining feature for any computing infrastructure project
from an investment perspective (Turner, 2024). Therefore, data centres tend to be located in geo-
graphic clusters based on optimal access to internet fibre networks, which are aggregated in cable
landing stations (IEA, 2024). Virginia has a globally unique, direct access to major subsea internet
fibre cables, through e.g., the Virginia Beach landing station, connecting the Northeastern US with
EMEA and South America. It also possess a dense on-ground power grid network (EIA, 2024a).
As a result, majority of historically US-built data centres were located primarily in Northern Vir-
ginia known as the ‘Data Center Valley’ (Fig. 18). Today, the region has the highest concentration
of data centres in the US and globally (Fig. 2).

Figure 1: Loudoun County in Northeastern Virginia has the closest proximity to both US-EMEA
and US-SA submarine cable infrastructure. Map Source: (TeleGeography, 2025)
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Figure 2: Northern Virginia accounts for almost half of the existing data centres in the US and
dominates the global computing industry. Data Source: (Dominion Energy, 2025).

Virginia has massively benefited from its unique geographic location. In recent years, the state
has experienced a rapid buildout of new computing infrastructure with annual added capacities
of 800 MW: an equivalent of 200 000 households or 45 mid-sized automobile assembly plants
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(JLARC, 2024). This resulted in substantial investment inflows; already in 2021 62% of all new
investments came from the computing industry (EIA, 2024a), while Loudoun County - the main
area of the buildouts, is the richest county per capita in the United States (U.S. Census Bureau,
2022).

Figure 3: Number of annually installed capacity additions of data centres in Virginia. Data Source:
(Dominion Energy, 2025).

The growth of the industry has resulted in unprecedented power demand needed to sustain the
newly added infrastructure. Since pre-Covid 2019, Virginia has increased its commercial electricity
consumption almost as much as Texas - a state with 3.5 times bigger population, and 4.5 greater
GDP (BEA, 2025). Data centres are a major reason for such rapid power demand. They are
estimated to account for 25% of Virginia’s total electricity consumption in 2023 (EPRI, 2024). As
a result, since 2021 the broad commercial sector - to which data centres belong - has overtaken the
residential sector as the main power consumer with over a 20% gap in 2024 - a unique phenomenon
across US states (See Fig 19). The study seeks to verify whether such power demand shock has
impacted local electricity markets.

Figure 4: Growth in Commercial Electricity Consumption across US. Data Source: (IEA, 2024)
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Importantly for this study, Virginia is the only state in Northeastern US to experience a major
growth in commercial electricity consumption, while other regional states do not demonstrate sim-
ilar patterns of demand (Fig 5 and 6). As a result, the state-based power providers are unable to
supply all the locally demanded power: since 2023, Virginia has been the biggest net importer of
electricity in the entire United States, importing 36% of state’s total power usage (Fig 21) (EIA,
2024). Such massive interstate electricity flows open an opportunity to investigate possible spillover
effects across the regional power markets.

Figure 5: Nominal growth of electricity commercial consumption across Northeastern States. Data
Source: (EIA, 2025a)

Figure 6: Index-based Smoothed Commercial Electricity Consumption across US Northeastern
States. Data Source: (EIA, 2025a)
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2 Literature Review
Despite their increasing importance, the academic literature linking data centres with power mar-
kets is limited. Since the 2000s, there have been limited and infrequent industry reports and
academic papers. The existing literature primarily focuses on estimating data centre’s electric-
ity consumption and industry forecasts (Shehabi et al., 2016), (EPRI, 2024). (Shehabi et al., 2024).
(Mytton and Ashtine, 2022), (Shehabi et al., 2018) and (Masanet, 2020) offer empirical evidence
that energy efficiency improvements play the most important role in the long-term electricity con-
sumption of a data centre. For example, Masanet (2020) estimates that power usage per unit of
compute has annually decreased by 20% since 2010 due to new cooling technologies or hyperscal-
ing. Such efficiency gains offset the overall nominal growth of the industry, resulting in a stable
end-consumption across 2000-2016 (Shehabi et al., 2018). The trend of offsetting new demand
through efficient computing is claimed to be broken by the broad popularisation of ‘AI’ tools,
which are substantially more compute heavy. Several papers aim to isolate the impact of ‘AI’ ser-
vices on electricity consumption of data centres. Verdecchia et al. (2023) and de Vries (2023) offer
a critical review of the academic literature of ‘AI’-based power demand, which demonstrates con-
temporary Large Language Models (LLMs) are orders-of-magnitude more power intensive than
e.g. traditional search engines (Fig 7). EPRI (2024) and Koot and Wijnhoven (2021) highlight
other power-intensive uses of computing infrastructure. These include cloud computing and data
storage: heavily popularized during the Covid-19 pandemic, and cryptocurrencies. When com-
bined, the rapid growth of these technologies is suggested to have caused major shifts in demand
for computing infrastructure since at least 2020, leading to substantial electricity usage (Fig 24).
The study seeks to verify such claims. However, the aforementioned literature focuses primarily
on the estimation of the past and future data centre’s electricity consumption, without considering
its broader economic impacts1. The study seeks to fill this gap.

Figure 7: Average Power Consumption of various search models. Data Source: (IEA, 2024)
.

1For example: Shehabi et al. (2024) write the ”study seeks only to estimate the direct electricity use by data centres,
not any underlying economic factors or transitions that may substantially change the underlying environment and
technological base”.
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2.1 Existing Methodologies
This research draws from several existing literature, that employ the studies’ chosen methodologies
in the broader economic analysis of electricity markets. Borenstein et al. (2002) demonstrates that
increased demand for electricity with constrained supply leads, to increased prices, an underlying
mechanism investigated by the study. Li et al. (2021) directly employ structural break tests (Chow,
1960), (Andrews, 2003) to estimate the impact of oil shocks on residential (household) electric-
ity consumption, while Esmaeili and Rafei (2021) deploy VAR analysis to deconstruct impact of
the same oil shocks on electricity prices and overall inflation. Haldrup et al. (2010) investigate
price convergence between different geographical power systems in the Nordics: electricity prices
tend to spill over across highly integrated power markets. In the US context, (Stock and Watson,
1996) demonstrate the importance of incorporating structural break tests for long term times se-
ries analysis. Trost (1995) uses the restricted VAR to forecast regional monthly electricity prices
and consumption providing useful insights into optimal choice of variables, while Horowitz (2007)
presents empirical and theoretical evidence for spillover effect across state-level electricity markets.
Similarly, Ros (2017) demonstrates the different elasticity levels across different sectors: residen-
tial consumers tend to be more responsive to price shocks than commercial and industrial power
offtakers. Synthetic Control Analysis has seen a limited use, primarily to estimate the effects of
restructuring of the US power markets after 1990s (Hill, 2021). This research seeks to leverage the
aforementioned methodologies to investigate the extent to which data centres influence prices and
demand across regions and non-commercial sectors: primarily residential and industrial2.

2.2 The Case Study of Virginia
The majority of the existing literature focuses on either global or national levels only (Shehabi
et al., 2024), (Mytton and Ashtine, 2022), (EPRI, 2024). However, data centres, due to invest-
ment requirements for close proximity to fibre networks, are clustered within specific geographic
locations and should be analysed on regional level. Therefore, this research is grounded in the
unique context of the state of Virginia. Turner (2025) and JLARC (2024) offer an official review of
the development of data centre industry in Northern Virginia, particularly Loudoun County3, and
provide a review of existing policy incentives dedicated to data centres. Virginia, both on county
and state levels, incorporates similar tax and permit policies to competing states, which reiterates
its unique, exogenous, geographic feature Turner (2024), DoE (2024). Additionally, commercial
literature offers two important insights for policymakers:

1. Market saturation: Virginia’s power grid is at its full capacity, meaning additional invest-
ments in data centres are limited due to constrained power supply,

2. Increased electricity prices: If new power generation capacities are not built, substantial
electricity price increases are forecast across all sectors in Virginia (Aurora Energy Research,
2024), (Dominion Energy, 2025).

The literature review reveals there exists a sufficient knowledge gap to study the impact of data
centres on electricity markets, grounded in the regional context of Virginia US. The study seeks
to fill this gap by deploying verified econometric methods to offer robust quantitative evidence of
the impact of data centres on power markets within the region of Northeastern US and expand
the economic dimension of contemporary literature on data centres. The chosen methodologies:
structural break, synthetic control analysis and VAR, have been often deployed in the context of
electricity markets motivating the choice of tools for this study.

2The Transportation sector is a minor power user and is disregarded in the study EIA (2025a).
3In 2008 Loudoun has introduced the first incentives to attract the industry, expanded in the late 2010s (Fig 17).
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3 Methodology

3.1 Data
According to the author’s knowledge, there exist no regular, official and reliable monthly or annual
estimations of direct state-level electricity usage from data centres (Shehabi et al., 2024). There-
fore, to estimate Virginia’s data centre electricity consumption, this study constructs a new dataset
based on several publicly available databases consisting of: macroeconomic indicators, weather
and seasonality controls, granular electricity market data, and state-specific controls. The data
range spans 2000-2024 at monthly frequency. It covers a regional cluster of neighbouring states
that belong to the common regional electricity transmission system (the PJM): Maryland, North
Carolina, Pennsylvania, Tennessee, Virginia and West Virginia4. Neither of the states, apart from
Virginia, have any major capacity of computing infrastructure (EIA, 2024a), which differentiates
them from Virginia. In 2003, the EIA has changed its electricity consumption accounting methods
(EIA, 2024b), which changed the data structures primarily for Virginia and Maryland. Addition-
ally, the US power markets have experienced a series of restructurings until early 2005. Therefore,
the final analysis covers the years 2008-2024 which offer greater number of available variables,
coherent data accounting and does not incorporate long term effects of market restructuring (DoJ,
2008). The electricity data is available at sector levels: residential, commercial, industrial and
transportation, while macroeconomic indicators can be deconstructed to specific industries, e.g.
employment in information sector. Crucially, data centres are classified within the ‘commercial
sector’ category of electricity usage (EIA, 2024a). This allows to isolate their consumption from
other power-demanding industries, such as manufacturing, and from impact of recent US indus-
trial policies e.g., the IRA which are primarily categorised in the ‘industrial sector’ (Bistline et al.,
2023).

3.2 Identifying Structural Breaks
I aim to reproduce an estimate of Virginia’s power consumption of data centres, which is based on
the assumption that data centres are primarily located based on exogenous geographic proximity
to internet fibre networks (EPRI, 2024), (Turner, 2024). I first investigate whether there was a
statistically significant structural break in Virginia’s commercial power consumption, i.e. whether
there was a sufficiently strong change in the electricity demand pattern. The standard approach to
structural breaks is introduced by Bai and Perron (1998), covering an example linear model:

yt = x′
tβ + z′tδj + ϵt where:

1. yt is the independent variable,

2. xt(p× 1) and zt(q × 1) are vectors of covariates,

3. β which is the corresponding vector of constant coefficients,

4. δj which is the corresponding vector of regime-dependent coefficients,

5. ϵt is the error term,

6. (T1, . . . , Tm) are the structural breaks,

7. (j = 1, . . . ,m+ 1) are the existing regimes in the total timespan: (T0, . . . , T )

4Additionally, I incorporate two coastline states: Georgia and South Carolina, for control purposes.
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Following this framework, I introduce three methods to test whether Virginia’s commercial
electricity consumption has experienced a structural break between 2000-2024.

The Andrews Test (Andrews, 2003) is the method of choice based on its two properties: it is
designed for testing for structural instability over a short time interval, particularly at the end of a
data sample (Ibidem) and for identifying structural breaks when the timing of the break is uncertain
(Fair, 2003). The Andrews Test searches for the most likely structural break point by computing the
S-test statistic - a variant of the standard F-statistic (Chow, 1960), (Andrews, 2003), over a range
of potential breakpoint windows6, to identify the most probable date. The study’s regression can be
represented as:

yt = β0 + β1commercial prices + β2natural gas prices + βiweather controls
+ βimacroeconomic controls + βiCOVID-19 Dummies + βiEnergy Crisis +

γiSeasonal Dummies +
∑
i

δilag variablesi + ϵt

Given the high seasonality and persistent temporal effects of the underlying data and variables,
the study uses the Autoregressive Distributed Lag (ARDL) to determine the optimal lag structure,
defined as a multivariate ARDL model (Fig 6.2.):

yt = α0 +
∑p

i=1 ϕiyt−i +
∑q

j=0 βjXt−j + ϵt such that:

min{p,q} AIC(p, q) = ln(σ̂2) + 2k
n

where:

1. p and q are optimal lags for the dependent (yt) and independent variables (Vector Xt), σ̂2 is
the estimated variance of residuals,

2. k is the number of estimated parameters,

3. n is the number of observations.

The model uses the Akaike Information Criterion (AIC) (Akaike, 1974), which is more appro-
priate than e.g. Bayesian Information Criterion (BIC), as it is a flexible method to accommodate
longer lag structures in a smaller dataset. The Andrews Test fits with the study’s timing - the
impact of data centres on electricity markets has only been recent, and removes bias towards spe-
cific pre-defined dates (Andrews, 2003). The method is verified by the Chow Test (Chow, 1960),
which incorporates the pre-defined candidate-date structural break. It checks for a null hypothesis
of whether there was no shift in coefficients before and after the chosen breakpoint.

H0 : βt = β for all t vs. H1 : βt =

{
β1 for t < Tbreak

β2 for t ≥ Tbreak

The test is performed by estimating three regressions:

1. The unrestricted models for two subsamples (pre- and post-break),

2. The restricted model on the pooled data (assuming no break) where:

yt = x′
tβ1 + ϵt, for t ≤ Tbreak.

and
yt = x′

tβ2 + ϵt, for t > Tbreak.

6defined through parameter h Andrews (2003).

11



where the Tbreak is a pre-defined break date.

A f-statistic is then computed to evaluate the statistical significance of the breakpoint (see Ap-
pendix):

F =
(SSRr − (SSR1 + SSR2))/k

(SSR1 + SSR2)/(n1 + n2 − 2k)

Finally, for further robustness, I perform the Cumulative Sum Control (CUSUM) (Brown et al.,
1975), to test for the coefficients stability over time and indicate whether the shock was abrupt or
smooth. The CUSUM test is based on the intuition that if a regression’s βi change over time, then
a one-period-ahead forecast will not be accurate. If the regression’s coefficients remain structurally
unstable, the cumulative sum of recursive residuals wi will increase instead of stabilising. There-
fore, we can formally define a two-sided CUSUM as a sequential sum:
CUSUMt =

∑t
i=1 ŵi.

3.3 Synthetic Control Analysis
I then proceed to the synthetic control analysis to demonstrate that data centres perform a crucial
role in Virginia’s structural break. First proposed by Abadie and Gardeazabal (2003), the method
constructs a ‘synthetic’ control region, which resembles the economic characteristics of the study
region. It then follows the economic evolution of such ‘counterfactual’ control index: syntheticVir-
ginia, and is then compared with the actual region: realVirginia. The index region, which does not
incorporate controls for data centres, is then compared to identify the impact of the explanatory
variable, in this case: the computing industry, on the dependent variable: commercial electricity
consumption. The research follows the guidelines set by (Abadie, 2021). I specifically choose
the Synthetic Control Analysis method as it is often leveraged to study evolutions between dif-
ferent geographies (Abadie and Vives-i Bastida, 2021) and it simultaneously accounts for major
macroeconomic effects such as the COVID-19 pandemic, which equally affected both Virginia and
neighbouring states. The treatment effect is defined as:

Y1t = Y Synth
1t + τ1tD1t

where:

1. Yit is the outcome variable of interest for state i at time t, where i = 1 corresponds to
the treated state (Virginia), and i = 2, . . . , J + 1 represent the donor pool (Control States)
(Abadie, 2021), (Ponne, 2023). Therefore, Y Synth

1t is the potential outcome for Virginia in the
absence of treatment - no data centres,

2. τ1t is the treatment effect

3. D1t is a binary indicator equal to 1 if t ≥ T0 (post-treatment period), and 0 otherwise.

In comparison to standard difference-in-difference, the intuition behind Synthetic Control Anal-
ysis is that a combined set of states from the donor pool approximates the affected state (Virginia)
much more efficiently. Therefore, the counterfactual Y Synth

1t is estimated by a weighted average of
the control units:

Ŷ N
1t =

J+1∑
j=2

wjYjt
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The weights W = (w2, . . . , wJ+1)
′ are conditioned on wj ≥ 0 and

∑J+1
j=2 wj = 1, and optimised

(Abadie et al., 2010) such that:

J+1∑
j=2

w∗
jXj ≈ X1

with Xi being vector of pre-treatment characteristics for state i = 1. The difference between
the treated and synthetic control is then computed as:

τ̂1t = Y1t − Ŷ Synth
1t

Importantly, due to the methodology’s design the impact of small shocks when the underly-
ing variable is highly volatile - such as highly seasonal electricity consumption (Fig 22), is lim-
ited. Therefore, only strong and persistent shocks will be recognised by the model (Abadie, 2021).
Therefore, the second null hypothesis is:
H0 :Virginia’s commercial electricity demand will be higher than the synthetic region control after
the structural break point.

3.4 Vector Autoregression
Following the structural break and synthetic control analyses, I investigate the dynamic interdepen-
dencies between Virginia’s commercial electricity consumption and the broader regional electricity
market. I deploy the Vector Autoregressive Model (VAR) (Sims, 1980) to capture and account for
bidirectional relationships between e.g., electricity consumption and electricity prices across indus-
trial and commercial sectors, without requiring strong a priori causal assumptions. The reduced-
form VAR(p) model for a vector of N endogenous variables yt is defined as:

yt = A1yt− 1 +A2yt−2 + · · ·+Apyt−p + ϵt, where ϵt ∼ N (0,Σ), and:

1. yt is a (N × 1) vector of time-series variables at time t,

2. Ai are (N ×N) coefficient matrices capturing the effect of lag i,

3. ϵt is a N-dimensional iid white noise vector.

The model is then estimated using OLS per each equation. The specified models consist of 5
variables:

1. Xj,s,t : Electricity price or consumption in the target statej and sectors - the target variables,

2. τ̂1t : Synthetic Residuals obtained through SCA, which represent the proxy for Virginia’s
data centres’ electricity consumption,

3. GDPj,s,t : GDP in the target state - a proxy for economic activity (Kraft and Kraft, 1978),

4. Tempj,s,t : Average Monthly Temperature in the target state - a proxy for seasonality,

5. Gasj,s,t : Natural Gas Price in the target state - natural gas price is the marginal electricity
price setter in the US (EIA, 2025b).
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To determine the optimal lag length p and to ensure cohesive methodology across the study, the
V ar(p) model uses the Akaike Information Criterion (AIC) for the same reasons as the ARDL.

To ensure robustnesses of the tests, I use the augmented Dickey–Fuller (ADF) to test for sta-
tionarity of the variables. The Dickey-Full test results suggest all control variables are stationary
apart from the main variable of interest: synthetic residuals - a proxy for Virginia’s data centres
electricity consumption.

Table 2: ADF Test Results for Stationarity
Variable Statistic P Value Lag

VA commercial price -4.22 0.01 3
VA coincided index -3.62 0.03 3

VA nat gas price -3.85 0.018 3
VA avg temp -14.51 0.01 3

synth residuals -0.81 0.96 3

Therefore, since non-stationarity violates the initial VAR assumptions and leads to spurious
regressions (Granger and Newbold, 1974) I use first-differences:

∆Yt = Yt − Yt−1

to model the VAR. The Johansen test (see table 5) ensures no co-integration which excludes the
need to perform a Vector Error Correction Model. To interpret, the dynamic behaviour of the
system, I deploy Impulse Response Functions (IRFs) which model the effect of a one-unit shock on
the current and future values of yt, while accounting for lagged effects of e.g., economic activity.
The IRF is particularly useful to assess the magnitude of the impact of the variable of interest,
while incorporating exogenous influences of e.g. seasonal weather patterns and macroeconomic
performance. Therefore, the final hypotheses are:

1. Ho A positive shock in synthetic Residuals (τ̂1t) will increase electricity prices across Vir-
ginia’s and regional power sectors.

2. Ho A positive shock in synthetic Residuals (τ̂1t) will decrease electricity consumption across
Virginia’s and regional power sectors.
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4 Results
I deploy several configurations of the Andrews Structural Break Test (Andrews, 2003), which yield
statistically significant results. I then verify the suggested breakpoint dates with Chow Test (Chow,
1960). The resulting summary table is:

Table 3: Andrews and Chow Tests for structural breaks in Virginia’s Commercial Electricity con-
sumption

Model R-squared Break Date(s) Break Test p-value
Andrews Test (2008–2024) 0.95 2021-05 <0.01***
Chow Test (2008–2024) 0.96 2021-05 <0.01***

The tests suggest there was a structural upward break in Virginia’s commercial electricity con-
sumption in May 2021, which supports the stated hypothesis and previous literature (EPRI, 2024).
The residuals of each model - which deliberately does not account for data centres - tend to increase
after 2020 (Fig 25). Similarly, the CUSUM test indicates a stable growth of the model’s error rates,
until achieving statistically significant instability of the coefficients after 20217. This demonstrates
a growing omitted variable bias when modelling Virginia’s commercial electricity consumption
without incorporating a dedicated proxy for e.g., data centres.

Figure 8: The CUSUM test with the 95% confidence intervals

The Synthetic Control Analysis (SCA) (Fig. 9) leverages Virginia’s geography: unique close
access to international fibre optic cables, as a quasi-exogenous property for data centre buildout
within the Northern Virginia region. Such a framework assumes the only main difference between
Virginia and surrounding states is the presence of data centres. Therefore, the difference between
Real and Synthetic commercial electricity consumption can be assigned to data centres combined
with a structural break where:

Synthetic Gap = RealV irginiat − SyntheticV irginiat

7the 85th percentile of the sample set
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The results follow the historical dynamics described by the literature: during 2000-2015 digi-
talisation8 was offset by efficiency improvements resulting in stable consumption9 (Shehabi et al.,
2018). Since 2016, the data centres infrastructure has slowly started to grow, until the major shocks
of Covid-19. The massive and rapid increase in demand for online data storage and internet traffic
transferred to electricity consumption (Turner, 2024). Finally, the rapid popularisation of compute
heavy LLM-tools such as OpenAI (2025) or Anthropic (2025) has maintained and extended the
Covid-levels of electricity consumption (Shehabi et al., 2024). The Synthetic Control Analysis
aims to capture such quasi-exogenous shocks: buildout, Covid-19 and LLM popularisation, and
estimate the ‘no-data-centres’ scenario through the indexed non-Virginia states.

Crucially, the advanced and institutional review by EPRI (2024) offers a reliable and technical
estimate of Virginia’s data centre electricity consumption for the year 2023 at 33 TWh. The syn-
thetic gap when aggregated to annual data is equal to 28 TWh for 2023, only a 15% mismatch. This
yields two important results. First, the experiment tends to predict market dynamics in line with
official estimates (Ibidem.) and existing literature (Fig. 23 via Shehabi et al. (2024)). Second, the
Synthetic Gap underestimates rather than overestimates the data centre’s consumption. This limits
the risk of omitted variable bias. For example, some unobserved effects e.g., increased investments
from the data centre industry, could lead to increased commercial activity and electricity consump-
tion, which would be incorporated into the gap, resulting in an overestimated proxy for data centres
power consumption. Verifying the proposed proxy with (EPRI, 2024) increases the robustness of
the study’s findings. I run an additional SCA for Tennessee (Fig. 25) which yields no major dif-
ference between Synthetic and Real Tennessee. Such Placebo Test, increases the robustness of this
study’s methodology and supports accepting the second null hypothesis.

Figure 9: The Synthetic Control Analysis recreates the pathway of targeted state based on weighted
features of donor pool states.

8I.e. growing internet usage, which was served by data centres. For example, Virginia’s computing industry handled
70% of global internet traffic in 2019 (Virginia Economic Review, 2019).

9For example, Shehabi et al. (2018) write: The trend in data centre electricity use since 2000 is a success story of
energy efficiency.
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Figure 10: The gap between Real and Synthetic Virginia has been rising since at least 2016.

Figure 11: The energy usage gap between Synthetic and Real is in line with the mean-averaged
comparison between Virginia and neighbouring PJM States.

I deploy the VAR model with ‘Synthetic Residuals’ based on the synthetic gap. Therefore,
I only estimate the direct impact of approximated electricity consumption of data centres onto
sectoral and regional electricity markets. I operate in GWh of consumed electricity, dollars per
GWh prices and logged prices. Therefore, the Impulse Response Functions present an estimated
impact of an increase in 1 unit of power consumption (1 GWh) on electricity price (Dollars/GWh
and % percentage points) within a 24 months window. The intuitive theoretical mechanism is
based on Haldrup et al. (2010): increased demand for electricity combined with constrained supply
leads to higher prices. The analysis of Virginia’s electricity markets, reveals statistically significant
evidence for data centres’ power consumption influencing sectoral electricity prices (Fig. 12). The
IRFs demonstrate a sectoral differentiation: the impact on the industrial sector is more profound and
persistent than for the residential sector. This is in line with Ros (2017), which argues residential
electricity usage tends to be more seasonal - which increases the difficulty to isolate the shock
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effects of the IRF, and more responsive (elastic) to price shocks. Furthermore, the IRF for the
industrial sector might be more substantial than for others due to the baseline effect - residential
and commercial sectors consume much more power therefore, a nominal impact of 1GWh will be
smaller.

Figure 12: An increase of 1 GWh from data centres consumption influences prices across Virginia’s
electricity markets, with diminishing spillover effects
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Given that the monthly 1GWh consumption corresponds to only 1.4MW of installed capacity10,
a, on average, 0.2% price increase is substantial. This demonstrates the scale of market saturation:
a minor increase in additional demand can lead to major price fluctuations. JLARC (2024) predicts
currently there exist 1500 MW of data centres under construction in Virginia. Based on the initial
IRF estimates, such a sustained demand shock could lead to a compounded price increase of over
20% in the most affected sectors, primarily industrial, if not met with a proportional increase in
electricity supply.

There are two states which are net electricity exporters and operate within the same electro-
energetic system (the PJM) as Virginia: Pennsylvania and West Virginia. I investigate whether the
energy flows between the states and Virginia (EIA, 2024) have resulted in some effects on their
domestic markets. The experiment suggests data centres, in the form of synthetic residuals proxy,
could result in spillover effects influencing the prices in neighbouring states of Pennsylvania and
West Virginia11:

Figure 13: There is a statistically significant impact of increased electricity consumption from data
centres onto Pennsylvania’s sectoral electricity prices.

101.4MW is a minimum value assuming 100% load factor.
11Residential sector is the least empirically and theoretically responsive to IRF shocks, therefore I omit it in the

interstate analysis
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The impact of data centres on West Virginia’s electricity markets is less visible for one potential
reasons. The state’s main energy source is coal (85% of energy mix) EIA (2024b), meaning that
coal price fluctuations substantially influence electricity prices. The VAR model is fitted for natural
gas prices, leading to a potential ill-fit12. This limits the potential to isolate the true impact onto
West Virginia’s electricity markets.

Figure 14: There is no statistically significant impact of increased commercial consumption from
data centres onto West Virginia’s sectoral electricity prices.

For control purposes, I then test the hypothetical impact of Virginia’s data centres on commer-
cial electricity markets of South Carolina and Georgia - two states in close proximity to Virginia,
yet not integrated with its electrical grid (Fig. 15). Since both states are not members of the PJM,
the hypothetical impact should not be expected. The exercise yields no statistical significance, in-
creasing the robustness of chosen methodologies, and suggesting the hypothetical IRF shocks may
actually be driven by data centres and not other unobserved effects.

12Unfortunately, EIA does not offer direct, historical coal prices for West Virginia.
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Figure 15: The hypothetical impact of Virginia’s data centres on disconnected markets: South
Carolina and Georgia, is non-significant, ensuring the model is correctly deployed.

The experiment provides no evidence for data centres power usage influencing electricity con-
sumption patterns across other sectors and states. The IRF reveals high seasonality of consumption
patterns, particularly of the residential sector, which may limit the possibility to isolate the shock
to demand. Furthermore, the limited impact may be due to the baseline effect: Virginia’s average
monthly commercial consumption is equal to 6300 GWh, therefore a 1 GWh shock may be too
small to any strong effects. Therefore, I reject the last, null hypothesis. Due to the limitations of
this work, additional theory and empirical experiments are required to further verify the impact of
data centres onto consumption patterns.
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Figure 16: The proxy for data centres power usage does not create statistically significant impact
onto Virginia’s electricity consumption.
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5 Conclusion and Policy Implications
Technological and economic benefits of the computing industry are well-studied and promoted
on national and global levels (EPRI, 2024). This study offers a regional analysis of some of the
downsides and costs they generate: increased electricity prices which may lead to market saturation.

5.1 Policy Implications
The study offers an econometric method to estimate electricity consumption of data centres in
the state of Virginia. It estimates the impact of the industry on broader power markets across
the regional states via a dedicated proxy. A positive exogenous shock of 1 GWh of data centres
electricity consumption corresponds on average to a 0.2% persistent, commercial price increase in
Virginia. This indicates a major market saturation and is supported by further evidence of potential
spillover effects across regional states and sectors. In a scenario of limited supply of additional
power, the current growth of Virginia’s computing infrastructure could substantially price-pressure
non-data-centre industries and residential consumers (JLARC, 2024). This presents a major policy
challenge for both Virginia’s and regional lawmakers for several reasons:

1. Demand Forecasting: accurate predictions of future electricity demand are extremely im-
portant to grid operators, ensuring a stable and reliable power grid. Structural breaks play a
major role in forecast adjustment (Stock and Watson, 1996). By identifying specific struc-
tural breaks and the interactions between the data centre industry and electricity markets, the
study offers potential improvements to existing forecasting methodologies.

2. Cost Benefit Analysis: While the computing industry is responsible for more than half of
external investments into Virginia (Turner, 2025), rising prices of electricity will lead to
increased costs of living and perhaps even broader inflationary pressure (Esmaeili and Rafei,
2021). This research provides one of the necessary estimates to perform a broad cost-benefit
analysis of Virginia’s data centre industry.

(a) Environmental footprint: the study’s proxy offers first reliable estimation of monthly
electricity usage of data centres, allowing for early, regional, estimation of their envi-
ronmental footprint (Malmodin et al., 2024): a key component of contemporary cost-
benefit analysis. Additionally, while this study incorporates only the usage of electricity,
data centres are major consumer of other resources: primarily water (de Vries, 2023),
which should be incorporated in future studies.

(b) Costs of infrastructure: Expanding and sustaining Virginia’s data centre industry
will require substantial, regional, investments in power transmission infrastructure. This
opens a major coordination problem: which federal, state or industry actors should
finance the expansion of the grid? This research offers additional tools and estimates
for policymakers to make informed decision on optimal costs allocations for the power
grid expansion.

3. Price protections: The research provides some empirical evidence, power usage of Vir-
ginia’s data centres spills over to neighbouring states. State-level policymakers in e.g., Penn-
sylvania, should analyse to what extent they ought to accept (or regulate) such increased
electricity prices, which can undermine their own industrial and commercial sectors.

4. Lessons for the others: Finally, the study’s findings can potentially be expanded to broader
regions. The power grid of Northern Virginia is currently at its maximum capacity, limit-
ing the potential to physically add new data centres. Other US states, such as Texas, are
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speculated to accommodate additional infrastructure buildout e.g., Stargate Project (2025).
Incorporating study’s findings into accurate demand forecasting (Point 1), allocating finan-
cial responsibilities to power grid expansion (Point 2) and ensuring a market design which
protects pre-existing businesses and households from price shocks (Point 3), is in direct in-
terest of engaged stakeholders: policymakers, grid operators or data centre owners.

5.2 Limitations
Using the ‘synthetic residuals’ with a VAR model resembles the intuition behind the proxy-SVAR
method (Jordà and Mertens, 2022). Additional theoretical support and evidence of exogeneity
would allow expansion of the study’s findings into a formal proxy-SVAR experiment. Since this
study relies on proxy estimates for data centre activity rather than direct consumption data, any
causality claims regarding price and demand impacts are necessarily indirect and, hence, limited.
Future research should incorporate further specialised proxies for the activity of data centres such as
global internet traffic or usage statistics of popular AI tools e.g., ChatGPT family (OpenAI, 2025).
Currently such data is only available through paid services and tends to be disaggregated and un-
reliable (Shehabi et al., 2024). Furthermore, due to the limitations of this work, future research
should incorporate additional theoretical frameworks such as time-varying parameter or Markov-
switching models to account for the structural break modelling.

As the study suggests, the data centre industry evolves at a rapid pace. Compute-intensive
services such as data storage, cryptocurrencies and LLMs evolve and introduce major efficiency
improvements every year (Shehabi et al., 2024). Therefore, existing forecasts and estimates meth-
ods may need to be revised and adjusted13. New research should account for the evolution of power
efficiency of the computing technologies. The Energy Act (2020), which requires data centres to
monitor and publish their energy efficiency estimates, offers opportunities for such studies.

Further robustness could be achieved through additional market research on the PJM and data
centre industry. Large power-offtakers, such as data centres, tend to limit their exposure to market
prices through long-term power contracts (PPAs), which could potentially explain Virginia’s com-
mercial electricity trades at, on average, lower prices than industrial or residential sectors (Fig 20).
Therefore, data centres may tend to indirectly saturate the regional electricity market, while not
participating in the direct price formation. Explaining, verifying and formalising such a mecha-
nism through e.g., a network model14, presents an interesting avenue for future research.

The study leverages the unique geographic property of Virginia as a quasi-exogenous shock
to estimate the effect of data centres on Virginia’s commercial electricity consumption and their
indirect impact on regional electricity prices. The estimates are counter-verified with official, insti-
tutional reviews by EPRI (2024) and Shehabi et al. (2024) with only a 15% mismatch. The analysis
provides robust evidence data centres strongly impact the regional electricity prices with an exoge-
nous 1GWh shock leading to, on average, persistent 0.2% price increase. The impact onto long
term demand requires additional theory and empirical evidence. Given that data centres are the un-
derlying infrastructure supporting the Internet of Things economy or ‘AI’ research, their economic,
technological and political importance is growing rapidly (e.g., House (2023)). The study seeks to
incorporate a novel, economic, perspective on the industry and open new arrays for future research.

13For example, Carvallo et al. (2018) suggest while not meaningless, historical utility demand forecasts consistently
overestimate both peak and average demand.

14which incorporates and models an integrated PJM wholesale clearing price mechanism.
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6 Appendix

6.1 Electricity markets of Virginia
The data centre industry in Virginia has been consistently growing since early 2000s.

Figure 17: Data centres Permits in the Loudon County. Data Source: (Kimley-Horn Staff, 2024)

Majority of Virginia-based data centres are located within the Loudoun, Prince Williams and
Fairfax counties (JLARC, 2024).

Figure 18: Geographic Distribution of the data centre infrastructure in Virginia. Source: (JLARC,
2024).
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The commercial sector has overtaken the residential sector as the leading electricity consumer
in state of Virginia.

Figure 19: The commercial sector is the leading electricity consumer in Virginia, accounting to
over 60% of the entire power usage. Data Source: (EIA, 2024b)

However, this has not transposed into per sector electricity prices. The commercial prices have
diverged from its counterparts.

Figure 20: The dynamics of sector-based electricity prices in Virginia has diverged since 2021.
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Virginia (8.7 millions inhabitants, 598$ billions GDP) is the biggest net importer of electricity
in the entire United States, overcoming California (39 millions inhabitants, 3.9$ trillions GDP) in
2023 (BEA, 2025).

Figure 21: Net interstate electricity imports of California and Virginia (2000-2023) Data Source:
(EIA, 2024)

Figure 22: Based on 2008-2024 data, Virginia experiences a greater seasonal volatility of commer-
cial electricity consumption (EIA, 2024b)
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Simultaneously, Virginia experiences a greater seasonal volatility of commercial electricity con-
sumption. The energy usage dynamics provided by the Synthetic Control Analysis are in line with
evidence provided by (Shehabi et al., 2024).

Figure 23: (Shehabi et al., 2024) estimate and forecast a major breakthrough in US electricity
consumption from data centres.

Figure 24: The most recent forecasts of US data centre power consumptions. Source: (Shehabi
et al., 2024)
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6.2 Methodology
The Chow Test statistic is computed as f-statistic:

F =
(SSRr − (SSR1 + SSR2))/k

(SSR1 + SSR2)/(n1 + n2 − 2k)

where:

• SSRr is the sum of squared residuals from the restricted (pooled) model,

• SSR1 and SSR2 are the sum of squared residuals from the sub-sample models,

• k is the number of estimated coefficients,

• n1 and n2 are the number of observations in each sub-sample.

The ARDL lag selection, which deliberately does not incorporate proxies for data centres, in-
creases residuals over time.

The automatic, optimal weights for Synthetic Control Analysis are:

State Weight
MD 0.01
NC 0.83
WV 0.01
TN 0.01
PA 0.14

Table 4: Synthetic Control Weights for Virginia

The Johansen Trace Test Results reveal no evidence for co-integration:
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Rank Test Statistic P-10 Critical.Value P-5 Critical.Value P-1 Critical.Value
r <= 4 | 0 5.68 7.52 9.24 12.97
r <= 3 | 1 17.86 17.85 19.96 24.60
r <= 2 | 2 35.80 32.00 34.91 41.07
r <= 1 | 3 74.30 49.65 53.12 60.16
r = 0 | 4 172.61 71.86 76.07 84.45

Table 5: Johansen Trace Test Results: No Cointegration Detected

Remarkably, Virginia’s commercial electricity prices are both nominally and relatively lower
than of neighbouring states.
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6.3 Results
I perform a ‘Placebo’ Test for Synthetic Control Analysis for the state of Tennessee. The results
demonstrate no substantial divergence between Synthetic and Real electricity consumption - the
Synthetic Gap varies within a 10% bound between Real and Synthetic gaps, which increases ro-
bustness of the original SCA for Virginia.
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Figure 25: The residuals of several linear models incorporating the Andrews Test tend to increase
after 2020 which indicates some omitted variable bias.
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